ECE750-Topic11: Component-Based Software

Software Component Quality Models

Ladan Tahvildari
Assistant Professor
Dept. of Elect. & Comp. Eng.
University of Waterloo

Outline

- Introduction
- Measurement and Metrics for Software Components
- Multi-Criteria Evaluation
- Exploding the Myth of Component Evaluation
- Covering Some Research Papers
Introduction

- **Components:**
 - Independently deployed software implementations.

- **Assemblies:**
 - Aggregations of components that provide integrated behavior.

- **Selection:**
 - Choosing one component over another involves selection.

- **Evaluation:**
 - Formalized process of quantifying human judgment by assigning value to choices.

Evaluation

- **If...**
 - The quality of software components determines the quality of the composed system,

- **Then...**
 - CBSE must provide techniques to reliably and repeatedly select high quality components.

- **And it follows from this that ...**
 - Component evaluation is a distinguished CBSE activity, with distinguished workflows and techniques.
Evaluation Attributes

select

vendor

health

reputation

composed attribute

component

function

usability

qualitative dependency

June 23, 2005

ECE750-Topic 11
Genus: Preference Structure-Based Evaluation

- **A preference structure**
 - This is the model of the decision.
 - A preference structure emerges when we express preference relations in terms of attributes.

- **An aggregation technique**
 - This is the tool that generates interpretations of the model.

Preference Relation

- **P(x, y), strict preference:**
 - States that x is strictly preferred to y.

- **I(x, y), indifference:**
 - States that neither x nor y is preferred.

- **R(x, y), incomparability:**
 - States that x and y are incomparable.

- For example, we might define a preference relation:
 \[S(x, y) = P(x, y) \land I(x, y) \]
Species: Multi-attribute Utility Evaluation

- The species can be seen through its formulaic expression, in which each evaluation attribute \(g_k \) is defined as the triple:

\[
<w_k, u_k, g_k>
\]

\[
U_x = S w_k \cdot u_k(g_k(x))
\]

- \(U_x \) denotes the overall utility of component \(x \)

- \(u_k \) denotes a transform function that maps the scale of attribute measure \(g_k \) to a universal utility scale \(u_k \)

- \(w_k \) denotes the substitution rate for \(g_k \)

Multi-Attribute Utility

- The preference structure most frequently associated with multi-attribute utility is:

\[
S(x, y, g) = P(x, y, g) \hat{E} I(x, y, g)
\]

\[
P(x, y, g) \preceq U_x > U_y
\]

\[
I(x, y, g) \preceq U_x = U_y
\]

Which states that \(x \) is preferred to \(y \) if it has a higher utility, and \(x \) and \(y \) are indifferent if they have the same utility.
Simple Utility Transform
Functions Usually

\[u(\text{usability}) \]

\[0 \]

\[\text{usability index} \]

\[100 \]

\[u(\text{functionality}) \]

\[0 \]

\[\# \text{ menu items} \]

Exploding the Myth of
Component Evaluation

- An Assembly:
 - Reflects the convenience in representing the composition of commercial components as systems, subsystems, sub-subsystems, and so forth.
 - The scope of a system, or its relative position in a hierarchy of systems is not material to what follows, we will use the term ‘assembly’ in place of ‘system’.

- That is, commercial components are assembled into assemblies.
Assemblies and Components

- Assemblies, once they exist, and commercial components will exhibit a variety of properties:
 - functionality
 - reliability
 - usability
 - and so forth

- The properties of an assembly are determined, in some way, by the properties of the components themselves.

Assembly Properties

\[P_A = \mathcal{D}(P_1, P_2) \]

Assembly Properties Determined by Component Properties
Satisfaction of Normative Abstract Interface

\[P_A = D(P_{E1}, P_{E2}) \]

Accommodating Variance

\[P_A = D(P_{E1} - P_1, P_{E2} - P_2) \]
The Inevitability of Hidden Properties

\[P_A = \mathcal{D}(P_{H1}, P_{H2}, P_{E1} - P_1, P_{E2} - P_2) \]

\[P_{E1} \cap P_{H1} = \emptyset \]