Mobile Robotics:
A Component Based Approach

ECE 750 – T4: Component Based Software Systems
Prof. L. Tahvildari

Yasmin Hovakeemian (20165205)
Adam Bertrand (20144032)
Outline

- Introduction
 - Robotics & Terminology
 - Sensors
- Proposed Robot & Mission
- Current Accomplishments & Future Work
- Simulation and Performance
- Related Research/Common frameworks
- References
Introduction to Robotics

- Multidisciplinary field that lends itself readily to component based software systems (CBSS)
 - Rapid development
 - Low cost
 - Modularity

- Robots generally have the following three aspects:
 - Set of sensors
 - Program of robot behavior (state estimation and control)
 - Set of actuators and effectors
Robotic Fundamentals

Sensors

- Sensor classification [5]:
 - Proprioceptive sensors (Internal):
 - Wheel encoders
 - Exteroceptive sensors (External):
 - GPS
 - SONAR/Laser
 - Bumpers

- Sensors can be chosen based on:
 - Environmental constraints
 - Objective/purpose (ie: vacuum robots)
Robotic Fundamentals

Robot Taxonomy

- **Autonomous** vs. Non-autonomous
- **Mobile** vs. Immobile/Stationary
- **Physical** vs. **Virtual** (‘Soft-Bot’ a.k.a Intelligent Agent)
Robotic Fundamentals

Control Architectures [6]

■ NASREM architecture:
 ○ Sense, model, plan, act

■ Subsumption architecture:
 ○ Layered control system

■ TCA architecture:
 ○ Task-specific modules with centralized control module

■ LAAS architecture:
 ○ Decisional (mission supervisor & task supervisor) and functional levels
Robotic Fundamentals

Control Architecture Characteristics [6]

- Hierarchical vs. Centralized Control
- Functional vs. Behavioral
- Reactive vs. Deliberate
Why a ‘Soft-Bot’?

- No hardware needed (cheaper)
- Can exploit advantages of component based software systems
 - Reusability & Modularity
 - Extendibility
- Time and Cost efficient
Proposed Project

Goal:

- Build an centralized autonomous mobile soft-bot using concepts from component based software systems to perform a specific task/mission
Definition of Mission/Task

- Autonomously navigate the proposed circuit as fast as possible.
- Avoid any obstacles in the way of the robot.
- Comply with any traffic signals on the course.
System Model

High Level Architecture

High Level System Design of Mobile Autonomous Robot
System Model

High Level Architecture

Simulation/GUI

Controller

Robot Motor
Robot Steering
GPS
SONAR
Laser
Encoders
State Estimator

Effectors

Sensors

July 13, 2009
System Model

Component Level Architecture

- **RobotSteering**
 - currentHeading : double
 - desiredHeading : double
 - steer() : void

- **RobotGPS**
 - currentLocation : double
 - desiredLocation : double
 - getLocation() : double

- **RobotMotor**
 - translationalVelocity : double
 - rotationalVelocity : double
 - CcwRotation : boolean
 - isRotating : boolean
 - rotationalDirection : boolean
 - MAXtransVel : double
 - MAXrotationalVel : double
 - MAXaccelTrans : double
 - MAXaccelRotational : double
 - accelerateTrans() : void
 - accelerateRotational() : void

- **Robot**
 - isRunning : boolean
 - motor
 - steering
 - encoders
 - gpsModule
 - laserModule
 - sonarModule
 - stateEstimator
 - currentLocation : int
 - desiredLocation : int
 - robotEnvironment
 - start() : void
 - stop() : void
 - executeBehavior() : void

- **RobotStateEstimator**
 - currentState
 - estimateNextState() : void

- **RobotBumper**
 - collision : boolean
 - RobotEnvironment
 - checkForCollision() : boolean

- **Notes**
 - Does not show get/set and constructor operations
 - Shows Current Accomplishments
Mission

- Currently, soft-bot mission (task) is to start and stop a random walk
- In the future, mission of soft-bot can be adapted by simply changing the `executeBehavior()` method in the Robot class and environment.
Missions
State Diagrams

Random Walk in 4-walled environment
Missions

State Diagrams – Cont’d

Figure 8 track mission with traffic light and stop signs
Performance & Simulation

Simulation (Environment, Sensor Data)

Performance metrics:
- Time to complete mission
- Smoothness of trajectory/path
- Robustness to noise in sensor data
Analysis of System

Advantages:
- Reusability of code
- Extendibility (add components as needed)
- Behavior can be easily adapted
- No hardware costs

Disadvantages:
- Need to simulate hardware components (can be complex)
- Need sensor data to be realistic and coherent with one another
- May not necessarily match up with the real world
Current and Future work

- **Current Accomplishments:**
 - Soft-bot with random walk mobility

- **Future Work:**
 - Add additional sensor capability (eg: Sonar, Compass, etc)
 - Develop more complex environments
 - Obstacles
 - Figure 8 Track
 - Noise
 - GUI development (envision the robot in its environment with a mission)
Related Research

- Component-based robotics frameworks are available:
 - Maintain repository of components
 - Emphasize extensibility
 - Allow for development of single vehicle to distributed and/or decentralized robots

- Advantages of frameworks [7]:
 - Formal organization of components
 - Uniform communication mechanism between components
 - Component reusability
 - Starting point for amateurs

- Example Application
 - DARPA Grand Challenge
Related Research

Available Component Based Frameworks

<table>
<thead>
<tr>
<th></th>
<th>CARMEN</th>
<th>Webots</th>
<th>Player/Gazebo</th>
<th>Simbad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform</td>
<td>Linux</td>
<td>Windows/Linux/MAC</td>
<td>Windows/Linux/MAC</td>
<td>Windows/Linux/MAC</td>
</tr>
<tr>
<td>Open Source</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Built-in visualization (GUI)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Built-in Localization</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Build-in 3D vision</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Sensor Simulator</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Ease of use</td>
<td>Moderate</td>
<td>Easy-Moderate</td>
<td>Moderate</td>
<td>Easy</td>
</tr>
</tbody>
</table>
Summary

- Since Robotics is such a module-based field, it can take advantage of organizational aspects of component based software systems.
- A number of available software frameworks for component-based soft-bots.
- Current OO implementation of soft-bot capable of a random walk task.

Questions?