Cultural scene detection using reverse Louvain optimization

Mohammad Hamdaqa a,∗, Ladan Tahvildari a, Neil LaChapelle b, Brian Campbell b

a Software Technologies Applied Research (STAK) Group, University of Waterloo, Waterloo, Ontario, Canada
b Sceneverse Inc., Kitchener, Ontario, Canada

HIGHLIGHTS

• Formalized an ontology for graphing socio-cultural “scenes” in Meetup data.
• Created a k-partite, directed “scene graph” of all data (people, place, topic).
• Applied Louvain optimization recursively “in reverse” to partition the graph.
• Compared with overlap analysis of three weighted, undirected graphs.
• “Reverse Louvain” offered same precision, better recall of scene data.

ARTICLE INFO

Article history:
Received 1 February 2013
Received in revised form 31 October 2013
Accepted 9 January 2014
Available online xxxx

Keywords:
Scene ontology
Scene graph
Social analytics
Community detection
Cultural web

ABSTRACT

This paper proposes a novel approach for discovering cultural scenes in social network data. “Cultural scenes” are aggregations of people with overlapping interests, whose loosely interacting activities from virtuous cycles amplify cultural output (e.g., New York art scene, Silicon Valley startup scene, Seattle indie music scene). They are defined by time, place, topics, people and values. The positive socioeconomic impact of scenes draws public and private sector support to them. They could also become the focus for new digital services that fit their dynamics; but their loose, multidimensional nature makes it hard to determine their boundaries and community structure using standard social network analysis procedures. In this paper, we: (1) propose an ontology for representing cultural scenes, (2) map a dataset to the ontology, and (3) compare two methods for detecting scenes in the dataset. The first method takes a hard clustering approach. We derive three weighted, undirected graphs from three similarity analyses; linking people by topics, topics by people, and places by people. We partition each graph using Louvain optimization, overlap them, and let their inner joint represent core scene elements. The second method introduces a novel soft clustering approach. We create a “scene graph”: a single, unweighted, directed graph including all three node classes (people, places, topics). We devise a new way to apply Louvain optimization to such a graph, and use filtering and fan-in/out analysis to identify the core. Both methods detect core clusters with precision, but Method One misses some peripherals. Method Two evinces better recall, advancing our knowledge about how to represent and analyze scenes. We use Louvain optimization recursively to successfully find small clusters.

© 2014 Elsevier B.V. All rights reserved.

* Corresponding author.
E-mail addresses: mhamdaqa@uwat erloo.ca (M. Hamdaqa), ladan.tahvildari@uwat erloo.ca (L. Tahvildari), neil@sceneverse.com (N. LaChapelle), brian@sceneverse.com (B. Campbell).

0167-6423/$ – see front matter © 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.scico.2014.01.006

Please cite this article in press as: M. Hamdaqa et al., Cultural scene detection using reverse Louvain optimization, Science of Computer Programming (2014), http://dx.doi.org/10.1016/j.scico.2014.01.006
1. Introduction

Cultural scenes\(^1\) [1–4] emerge whenever a critical mass of people interacts within some shared context (place and time) with overlapping interests on shared topics [5]. Examples include the New York art scene, the Silicon Valley startup scene, the Paris fashion scene, and myriad smaller and less sharply delineated local scenes all over the world.

1.1. Problem: the challenge of scene analysis

People on a scene do not typically all know each other. Connections both within and between clusters can be weaker than in a friends-based network, as well as less direct. The only connection between two people may be two connected interests, participation in similar events, or patronage of a particular business that is a known scene place. This partial mutual anonymity is important for giving scenes the diffuse and pervasive character. It lets the scenes serve as a soft frame of reference for their diverse, differentially committed participants [6,7].

The diffuse nature of scenes does not prevent them from being powerful drivers of economic and cultural value creation. The indie music contributed approximately $379.4 million to the Canadian national economy in 2011, and roughly half of that value was generated by smaller players operating at the local scene level [8]. Chicago assessed the impact of its own local indie music scene by determining how much of the $80 million spent on live music tickets in 2004 went to large pop acts listed in the Billboard 100 versus niche and specialized artists listed in the Village Voice Pazz and Jop Critics Poll. Again, the split was close to 50% [9]. When Seattle assessed the economic impact of their own musical scene in 2004, they of course had to refer to one particular grassroots/indie scene repeatedly: the grunge scene, made world famous by bands like Nirvana, Pearl Jam, Soundgarden and Alice in Chains [10]. Small local scenes frequently blow up to become global phenomena, they can utterly transform local economies in the process.

The positive socioeconomic impact of scenes is strengthened, not weakened by the indirectness of scene networks. In this regard, scenes can be described as adventitious networks. The property of adventitiousness in this context means that many links are accidental and indirect, but fortuitous\(^2\) [11]; producing positive feedback cycles of positive externalities\(^3\) [7], like Adam Smith’s invisible hand. People accidentally and unintentionally support and inspire people they will never meet to join the creative community and produce what it values, by virtue of these adventitious links [13].

In order to preserve the adventitious property of scene networks, representations of the community structure and boundaries of scenes need to be inclusive. High recall and larger cluster sizes are more desirable than narrower representations, given equal or near-equal precision. This is because the scene periphery feeds the core. The participation of less central people adventitiously supports the creativity of central people, so losing sight of scene participants seriously compromises a scene representation. However, achieving the necessary degree of recall with precision is difficult, because: (1) scenes are dynamic and evolve over time, (2) scenes are multifaceted, involving multiple interacting dimensions (topics, people, locations, times), and (3) scene interests can be hidden or implicit; in cold stars (i.e., not explicitly ranked or rated [14]), or sparse data.

1.2. Research goal and methods

The goal of this paper is to contrast two approaches to discover scenes in cultural data with a special interest in assessing the power and precision of each method for retrieving scene people. The data for our comparison came from the location-based social networking service Meetup.\(^4\) This online service helps people coordinate real-time, face-to-face gatherings (“meetups”) on topics of shared interest, and so serves as an acceptable proxy or indicator of scene activity. Our dataset included all meetups within 25 miles of Waterloo, Ontario, Canada. We devised a scene ontology that we used for organizing and processing the dataset, and subjected it to the following procedures.

In Method One, we generated three weighted, undirected graphs based on similarity analysis. One graph connected scene people through shared or similar interests. The second graph represented scene topic similarity based on people interested in those topics. The third graph delineated scene locations based on people using those locations. Each graph was then partitioned using Louvain modularity optimization [15] to reveal community structure, and then the three graphs were overlapped to reveal scenes. The inner join of the graphs was taken to represent central scene elements. This was a relatively hard clustering approach.

In Method Two, we devised a scene graph; an unweighted, directed graph which combines people, place and topic nodes in a single graph; with people as the source nodes and places and topics as target nodes. We also devised a way of applying the Louvain method to this graph, treating it as an undirected graph for modularization, then applying record reconciliation to restore node facet information to the partitioned graph for subsequent facet filtering. We could thus determine

\(^{1}\) Related social phenomena include: subcultures (Hebdige, 1979), neo-tribes (Maffesoli, 1996; Cova, 1997; Kozinets, 2001), and genres (Lena & Peterson, 2008).

\(^{2}\) Adventitiousness produces serendipity, so adventitious networks would subsume and generate “serendipitous networks”, defined as new connections between people who find themselves in the same immediate situation.

\(^{3}\) Shank (1994) [12] defines a scene as a runaway creative system: “an overproductive signifying community (in which) far more semiotic information is produced than can be rationally parsed”.

the community structure of scenes in the data; and identify their constituent topics and people. Then, we exploited the still-available directional information in the graph using fan-in/fan-out analysis to determine centrality. This was a relatively soft clustering approach.

1.3. Findings and limitations

A key finding of our research is that the limitations of Louvain optimization for identifying small clusters in large datasets can be overcome when the source domain is hierarchical. Large scenes generally contain sub-scenes. We therefore exploited the hierarchical operation of the Louvain method by applying it recursively to find the sub-scenes. That is, we first applied the Louvain method to the whole network to discover the main scenes, and then to those resulting scenes to reveal sub-scenes. This enabled the successful detection of community structure at different scales.

Results from the two different methods were evaluated with ground truth data, Jaccard similarity and our own metric of “scene theme” similarity. Both graphing techniques correctly identified the scene cores, but community size was larger with scene graph analysis (Method Two) than it was when similarity graphs were overlapped (Method One). This suggests that the softer scene graph analysis technique performed better at delineating the actual scene boundaries in the available data, and better preserved network adventitiousness.

Our scene graph is amenable to many more social network analysis techniques, and the extraction of more insights into scene structure and dynamics. However, such work lies beyond the scope of this paper.

1.4. Significance of the study

Several original contributions to the literature emerge from our research.

(i) Introducing the unique features of cultural scenes, including the property of adventitiousness, and propose them as new objects for social network analysis.

(ii) Formalizing our current conceptualization of scene elements in a semantic ontology.

(iii) Taking Louvain optimization; a clustering and partitioning technique usually used on bipartite, undirected graphs; and apply it to a directed k-partite graph. This enables Louvain partitioning of a multidimensional directed network.

(iv) Exploiting the hierarchical operation of Louvain optimization to circumvent its difficulty in detecting small clusters in large networks; applying it to the global network first, then recursively to emergent sub-graphs.

(v) Introducing a soft clustering strategy involving a novel “scene graph” and techniques for analyzing it; which together provide better scene recall than a harder clustering approach, with equal precision.

(vi) Creating a “scene theme similarity” metric, in a manner which may turn out to be generalizable to other k-partite graphs. No use of Louvain optimization that we are aware of applies it in the manner described in our paper.

The reminder of this paper is organized as follows: Section 2 describes related work and gives an overview of Sceneverse platform. Section 3 presents the scene ontology. Section 4 discusses the graph construction and scene identification methods. Section 5 presents our experimental design. Section 6 evaluates the scene discovery results. A discussion on the results is provided in Section 7. Finally, conclusions and directions for future work are presented in Section 8.

2. Related work and research context

This section position our work within the existing related work and defines its context.

2.1. Related work

This article presents an empirical study of scene discovery in online socio-cultural network data. This section puts our work in context within the substantial literature targeting similar problems.

2.1.1. Community detection in networks

A scene is a type of social community (i.e., people community) that shares topics of interest in designated locations during a period of time. In network and graph theory, a community is defined as a group of nodes that are densely connected to one another, but have relatively weak connections with other parts in the network [16]. Partitioning of nodes into groups and sub-groups is crucial to understand the meaning and behavior of the network. Studying grouping patterns to detect communities has been the focus of many research studies for long time (e.g., Stuart Rice had manually clustered data to study political groups in the 1920s [17]). Communities have been studied in almost all domains (e.g., social sciences [18–20], bibliometrics [21], anthropology [22], telecommunication [15], biology (i.e., human brain connectome [23])). For comprehensive studies on the literature of community detection in networks the reader can refer to Porter et al. [17], or Fortunato et al. [16] respectively.

Recently, there has been increasing interest in applying community detection techniques to discover virtual communities in online social networks and the cultural web [24–28]. Several techniques and algorithms have been devised to automatically detect communities in networks.
These techniques can be divided into two groups based on the type of the methods used to find the linkage between the network nodes. Communities can be detected using statistical correlation and similarity analysis (e.g., hierarchical clustering, k-means), or via graph partitioning [29] (e.g., Girvan Newman algorithm [20], network modularity [15], surprise maximization [30], k-clique percolation [31]).

Michelle Girvan and Mark Newman proposed using graph clustering for community detection [20]. Since then, the use graph clustering techniques (i.e., Modularity Analysis) to detect communities became very prevalent. This is because graph clustering and community detection share the same goal: to find clusters of vertices (i.e., modules) on a graph that are more strongly connected to each other than to the rest of the network. The difference is that while graph clustering techniques usually require us to specify the number of clusters we want to extract as input to the algorithm, in community detection techniques, discovering the number of communities is one of the desired outcomes.

Several studies have compared the performance of different community detection techniques with regard to modularity, performance, memory requirements, scalability and other measures. The work by Papadopoulos et al. [26] is an example of an up-to-date comprehensive comparison between these techniques within the context of social media networks.

2.1.3. Community detection applications

There have been several recent works that attempt to derive meaningful clustering using modularity techniques and graph partitioning. Most of these works deal with single facet graph clustering (i.e., clusters of stopic, people, locations, pictures, etc.). In the domain of folksonomy production [34], Begelman et al. [35] reduced tag proliferation by first designing an inter-tag correlation graph for tags that described the same resources. Then they partitioned this graph using spectral bisection and the modularity function. In related work on folksonomy grooming, Simpson [36], and Papadopoulos et al. [37] developed a technique for applying modularity optimization to directed graphs, while Barber [33] developed a method for applying it to bipartite graphs [33]. However, both approaches involved transforming the graphs so that modularity optimization could then be applied to them.

In contrast, our approach does not require transforming graphs. Instead, we leverage Louvain modularity's lack of concern with vertex-type and edge-direction to perform a pure modularity clustering that ignores type and directional data. Then, we use fan-in and fan-out analysis to extract that missing data from each community that the modularity analysis identifies.

To summarize, modularity and graph clustering techniques are usually applied to social networks after reducing the network into a simple form that consists of a maximum of two types of vertices. The price paid for this graph reduction is obviously a loss in information. Consequently, these approaches fail to detect communities in social networks that cohere in multifaceted ways (i.e., scenes).

2.1.4. Social graph creation

Social media networks contain multiple edge and vertex types depending on the network's “focal object” (e.g., people in Facebook, photos in Flickr), and the way other nodes are connected to it. No single algorithm successfully detects community structure in all such networks. Network design significantly determines the techniques that can reveal underlying topology, and understanding this topology is vital for delivering information services to network users.

In Sceneverse, the focal object is the scene itself, so Sceneverse services must be informed by scene graph topology.

A scene graph has at least three vertex types, connected through both symmetrical and asymmetrical (directed) relationships. However, many community detection techniques only work with simple, undirected graphs, with one or at most two vertex types. They cannot be used to analyze k-partite or hyper-graphs [26]. The Louvain modularity optimization method, used in this paper, shares these limitations. It was originally designed to work with undirected graphs. Arenas et al. [32] developed a technique for applying modularity optimization to directed graphs, while Barber [33] developed a method for applying it to bipartite graphs [33]. However, both approaches involved transforming the graphs so that modularity optimization could then be applied to them.

In contrast, our approach does not require transforming graphs. Instead, we leverage Louvain modularity's lack of concern with vertex-type and edge-direction to perform a pure modularity clustering that ignores type and directional data. Then, we use fan-in and fan-out analysis to extract that missing data from each community that the modularity analysis identifies.

To summarize, modularity and graph clustering techniques are usually applied to social networks after reducing the network into a simple form that consists of a maximum of two types of vertices. The price paid for this graph reduction is obviously a loss in information. Consequently, these approaches fail to detect communities in social networks that cohere in multifaceted ways (i.e., scenes).

2.1.3. Community detection applications

There have been several recent works that attempt to derive meaningful clustering using modularity techniques and graph partitioning. Most of these works deal with single facet graph clustering (i.e., clusters of stopic, people, locations, pictures, etc.). In the domain of folksonomy production [34], Begelman et al. [35] reduced tag proliferation by first designing an inter-tag correlation graph for tags that described the same resources. Then they partitioned this graph using spectral bisection and the modularity function. In related work on folksonomy grooming, Simpson [36], and Papadopoulos et al. [37] applied variations of different partitioning techniques to divide tag graphs into modules. Fatemi et al. [38] constructed a social network graph for the Internet Movies Database (IMDb) based on the reviewers for these movies. Fatemi then used four community detection algorithms to analyze the underlying community structure of the network. The study of IMDb is interesting because users review diverse topics that are interesting to them, hence communities of movies linked by their reviewers can reveal social interest clusters that cut across categories defined by genre tags.

In a study on friend relationships between social network users, Mislove et al. [39] have crawled public user profiles from different social media providers (e.g., YouTube, Orkut, Flickr and LiveJournal). The authors then studied the structure of the resultant networks using graph partitioning techniques. Traud et al. performed a similar study on data collected from Facebook, where they examined the roles of universities in structuring students' social networks [40]. Many other studies have also segmented user clusters based on various similarity factors. This has been extensively explored lately in the field of content filtering and smart recommendation systems. For example, Tsatsou et al. [41] integrate the results of Facebook, where they examined the roles of universities in structuring students' social networks [40]. M. Hamdaqa et al. / Science of Computer Programming 1690 (2014) http://dx.doi.org/10.1016/j.scico.2014.01.006
the scene timeline. They also have a particular title that connects to the scene’s topical theme (this scene terminology is explained in the scene ontology section of this paper). The second difference is that the scene concept also has a spatial dimension.

Zhao et al. [43] combined three event dimensions: the temporal, social, and textual content of blog streams, to discover events. Their technique involves three phases. In the first phase, they transform social text streams into a graph, then use N-cut method [44] to partition the graph into topics, such that each blog belongs to one topic. In the second phase, a social graph is constructed. The topic-based social graph is then partitioned into a sequence of graphs based on the intensity of interaction along the temporal dimension. Finally, in the third phase, the social-temporal-topical graphs are divided into finer-grained events by applying the N-cut graph partitioning method a second time.

All these prior studies deal with undirected, weighted graphs. Only Zhao et al. [43] deals with multifaceted graphs. None of these studies explored the partitioning of a directed, multifaceted graph in a single step. None of them leveraged the power of fan-in and fan-out analysis to further identify the facet types in each cluster as we did in our approach to scene graph partitioning.

2.2. Research context: the sceneverse platform

This study is part of a collaborative research program supporting the development of the Sceneverse platform.

2.2.1. Sceneverse mission

Sceneverse, a portmanteau of “scene” and “universe”, aims to support all scenes on a platform optimized for representing scene dynamics and facilitating scene transactions. Though scenes are natural contexts for economic activity [45,46], scene commerce can be contentious. To be successful, it must respect the complex interplay of values, politics, ideologies and attitudes that structure scenes [47–50]. For this reason, accurate representations of scenes and scene values are crucial for providing them with digital services.

On the Sceneverse platform, scene data will be derived from two sources: user-contributed content, and the behavior of people using Sceneverse enabled web and mobile applications. The provision of value-adding services will depend on the faithful representation and analysis of scenes in this data.

2.2.2. Sceneverse front-end components

Fig. 1 presents an overview of the Sceneverse platform. It provides complementary services at two different levels, front-end and back-end. Front-end services consist of web and mobile applications that serve participants’ needs from the scene center to its margins.

There are different levels of participation in scenes. Active scenes have a small, dense core of avid participants; as well as “near-satellite” members who participate fairly frequently, and many peripheral “far-satellite” members who participate infrequently.

For example, the inner core of an art scene would consist of full-time professional artists, the dealers that represent them, the galleries that display their works, the art critics that review it, and the primary patrons who purchase works. It would also include avid amateurs who spend equal amounts of time in these activities, and attend many of the same events, but who do so largely on a voluntary, non-cash basis. Near-satellite members would be the friends and contacts of this inner core who participate as spectators or dabblers in art-scene-related activities on a consistent basis (their default choice is to participate unless they are busy), but whose main occupations and preoccupations lie elsewhere.

Far-satellite members many not have friends or relatives in the scene core, but maintain an interest in art. They attend exhibitions, buy books and prints, and take classes on an opportunistic and occasional basis, rarely committing to more than one such activity, and only doing so once in awhile.

Sceneverse-enabled applications help the inner-core find better ways to produce and consume the “cultural capital” of the scene. Satellite members enjoy high-recall services that give them easier access to the scene’s core, enhancing their scene experience. Peripheral participants enjoy high-precision services that help them quickly and efficiently enjoy select scene activities as they fit their moods and inclinations.

Current Sceneverse front-end applications target avid/core and near-orbiting scene participants. One example Sceneverse currently offers is an event planning and ticket sales service for people booking concerts on the indie music scene. Sceneverse is also producing a storytelling application that engages scene participants in social, mobile, augmented reality content creation and curation. The application lets participants compose stories describing personal scene experiences, chronicle the broader history of their scene, discover other peoples’ stories, and indicate their sentiments towards stories. Stories include those based on Sceneverse Events. The user-contributed content and behavior provides essential information to create what we call a user universe. A user universe can be seen as an ego network of a user’s topics of interests, locations, and behavior monitored in both time and space.
2.2.3. Sceneverse back-end components

On the back-end, the Sceneverse platform aims to offer a cross-service, cross-device, pervasive frame of reference for all the digitally mediated activities that might support a local scene.

The back-end architecture under consideration in this paper consists of three main components; the scene ontology, a semantic and linguistic engine, and the scene extraction engine. Both of the engines depend on the scene ontology, which provides the vocabulary for building semantic queries, rendering scene content, and reasoning about new and existing scenes. For example, the semantic and linguistic engine provides natural language understanding and semantic web links for processing and annotating user stories with context-appropriate tags. It also supports dynamic rendering of content based on the scene ontology. The extraction engine uses pre-existing web data as well as data gathered from frontend services to discover scenes. All the algorithms needed to identify and reason about the socio-spatio-topical boundaries of scenes are either implemented in the semantic/linguistic engine or the scene extraction engine.

These back-end processes support front-end tasks and facilitate the creation and manipulation of scene representations.

3. The scene ontology

The scene ontology developed for this paper furnishes a set of clear concepts with well-defined interrelationships for representing cultural scenes in web data. Such a formal scene ontology is essential for (1) building semantic queries, (2) rendering scene content, and (3) reasoning about new and existing scenes. The ontology proposed in this section is mainly used to consolidate the data collected from different resources and check inconsistencies. It will also be used in our framework for querying the data.

The rationale for scene participation is the scene itself, which is its own ultimate reason for gathering/clustering. No individual scene dimension alone can furnish the reason, since adventitious connections can come through all of them. This becomes clear when you ask a core scene participant why they care about the scene. The answer is unlikely to be only one thing, or one type of thing, but their cumulative scene experience in its totality. Because the scene is both psychologically and sociologically real, it has its own distinct representation in our ontology.
3.1. High-level overview

The Scene is constituted by several other ontological concepts, including Topics, People, Locations and Times. In our current ontology, we split the Time dimension into two categories: Scene Active Period, and Events. The two time concepts are needed to define temporal boundaries of scenes. Scenes are constituted by many events, which in total sum up to the Scene Active Period. This is shown in the UML diagram illustrating the scene ontology in Fig. 3.

While the UML diagram gives a useful schematic overview, the fully formalized ontology exploits RDF and OWL to explicitly represent the scene facets and their relationship in a way that allows easy discovery, dynamic access, and simple linkage to other resources on the web.

Ontologies can be either designed from scratch or as an extension of existing ontologies. Extending existing ontologies is the recommended best practice [51]. An ontology can be extended horizontally or vertically. In horizontal extension, the original ontology is imported and used in the same way (i.e. with the same semantics) as in the domain it was imported form. In contrast, with vertical extension, an ontology is imported and then updated to support the new domain. A good core ontology should be designed to support both horizontal and vertical extension, by maintaining the right balance between domain-independent and domain-specific concepts. Getting the balance wrong can restrict further vertical extensions in the future.

Our scene ontology was designed by horizontal extension [52] through importing existing ontologies, e.g.: TimeOntology, EventOntology, FOAF, and GeoOntology. It was also designed to be generic enough to support vertical extensibility [53] to other domains.

Fig. 2 shows an excerpt of the Scene ontology. The Scene ontology has been constructed using the Protégé [54] ontology editor. When transcribing an OWL ontology to RDF, every statement must be converted into triples. An RDF triple contains a subject, a predicate and an object. A set of such triples is a graph, where the subject is always a node, the predicate is always an arc and the object is always a node. The OWL scene ontology graph is fully laid out in Appendix A of this paper. Its corresponding RDF triples are given in Appendix B.

Protégé utilizes various Description Logic reasoners (e.g., RACER [55], FaCT++ [56], Pellet [57]) to perform different inferencing services (i.e., computing inferred superclasses, determining class consistency). In addition to reasoning, Protégé facilitates generating the RDFs needed to query the model using the SPARQL protocol and RDF query language [58]. In this paper, model reconciliation between the ontology and the dataset (i.e., Meetup data) was carried out by mapping the API schema elements to the ontology concept tree manually, and a script was used to populate the OWL ontology with individual elements based on the target social network site API. The design of the Sceniverse platform calls for a semantic and linguistic engine that automatically tags parsed data from users’ stories with concepts belonging to the scene ontology. The implementation of such an engine is out of scope for this paper.

3.2. Main scene concepts

The main scene concepts are Topic, People, Locations and Time. Each is expanded and explained in detail below.

Topic: The subject of interest. It can be anything (e.g., person, place, event, topic, thing). A scene is normally described as a list of topics (e.g. the Blues/Jazz scene).
People (social graph): Scene participants share a reason for gathering, and thus form a membership group, albeit a diffuse one. The network centrality of People derives from their contribution to the Scene and their activity level (active or passive). Types of People include:

(a) Scenester: A Person whose Scene is clearly identified.
(b) Scenester Friend: A Person who communicates and collaborates with a Scenester, but does not participate directly in that Scenester's Scenes.
(c) Multi-Persona Scenester: A Person with multiple persons. A persona is how a Person is known on a particular Scene. A single-persona Scenester is just a Scenester.
(d) Personage: Some person named or mentioned in Scene stories, chronicles or news. May or may not also be a Scenester.
(e) Silhouette: An abstraction over Scenesters, persons and Personages. Silhouettes define various categories and types of People, what they value, how they are valued and how much prestige they have in the scene. The platform's engines generate Silhouettes for marketing purposes or making recommendations etc. This allows People to be typified while protecting their privacy.
(f) Scene Organizer: A Person who sets up Scenes and grants authorizations to new Scenesters.
(g) Scene Follower: A Person who follows Scenes, but is not a Scenester or Scenester Friend. A Scene Follower is a passive presence, whose existence amplifies the Scene's reputation. However, s/he does not otherwise participate in the Scene.
(h) Secluded Scenester: People who are not part of any Scene (e.g., new members in online networks who have insufficient profile or interest data).

Location: Holds the list of locations (e.g., Uptown Waterloo, University of Waterloo) where Scene events and happenings have previously occurred. These locations are centralized around the main scene location (e.g., Waterloo)
Time: Captures the temporal aspect of the scene. Processing Time is much harder than processing the other scene dimensions. Currently, we manage scene temporality using two main concepts:

(a) **Scene Active Period:** The period during which People were involved in activities related to the Scene, and Events were organized. Conventions for declaring a Scene inactive are needed (e.g., if no Events have occurred in the past two years).
(b) **Event:** Used to capture a Scene snapshot. An Event has the following properties:
 - **Title:** Should be aligned with Scene themes, described by the list of Scene Topics.
 - **Location:** Should fall within the perimeter defining the core Scene Location.
 - **Participants:** Should be Scene People. Behavioral and social data indicate when someone new should be added to the list of Scene People.
 - **Time:** This value percolates upwards to be used in inferences that determine the Scene Active Period. The timespan between the first Event Time and the Time of the last Event defines the Scene Active Period.

Capturing the temporal data is one of the main challenges. The elements used to capture the temporal data in our ontology (i.e., Scene Active Period and Event) are discrete and hence, by using the standard methods of publishing structured data (i.e., RDF) the ontology can be updated with the correct information. Currently, the Sceneverse framework depends on batch processing to update the data, and the update function runs periodically.

3.3. Passions as associations

Scenes are fundamentally constituted by the collective set of relationships or associations that connect People with their Topics of interest. In Fig. 4 these associations are represented as Passions connecting a Person to a Topic. Fig. 4 shows that people can be part of the scene or peripherals. People who are part of the scene directly affect the scene reputation through their participation or contribution to the scene. While peripherals only follow the scene; hence, they affect the scene reputation by their collective engagement, not direct contributions. For example in a soccer scene, a soccer player is part of the scene because s/he directly affects the scene, while the team fans are just followers. Similarly, in the social network scene people who contribute to the topic by commenting can have direct impact on the scene and hence they are in the core of the scene; whereas, people who just like the topic or silently follow it are peripherals.

Recall that a Topic can be anything. There are topic-people who cannot be real people or Scene People (they may be fictional, like Harry Potter, or dead/historical, like Socrates). There can also be topic-people who happen to also be real people, and who may further be Scene People of some type. Similarly, there can be topic-places, topic-events and topic-periods.

"Passion for" can capture the strength of a Person's connection to any object of interest. These relationships can be explicit or implicit, with Time (real-time, not topic-time) and Location working as orthogonal factors (disjoint) that either weaken or strengthen these relationships. This is illustrated using concentric circles in the bottom right corner in Fig. 4, where Passion decreases with temporal, spatial or social distance.

4. Graph construction and scene identification methods

Identifying the socio-spatio-topical boundaries of a scene is a non-trivial soft clustering problem. Clustering needs to exploit both the similarities among multiple concepts (i.e., people, topics and locations), and the relationships between these concepts, in order to identify community's boundaries. In this section, we describe how we collected and prepared our data, and enacted two methods for graphing that data and detecting scene structures and boundaries implicit in it.
4.1. Graph construction overview

Fig. 5 illustrates the entire procedure we followed in our approach to detecting scenes, including both methods of graph generation and analysis that we evaluate in our study. Both techniques start with a data preprocessing stage. Method One (Blue) applies similarity analysis to create three undirected weighted graphs (i.e., a contingency matrix); one for topics associated by people who are interested in them, on for people associated by interest in similar topics, and one for places associated with similar people. Method Two (Red), by contrast, starts right away with the construction of a single scene graph; a simple directed graph that permits nodes of all three kinds: people, topics and locations.

Following graph construction, clustering is carried out on all of the graphs using network modularity analysis. In Method One, the three separate similarity graphs are clustered individually, and then combined by finding the intersection between the clusters. This produced a single graph for comparison with the single graph already generated using Method Two.

After clustering, both resulting graphs are further analyzed and visualized using graph visualization and manipulation software (Gephi) [59]. Finally, the scenes revealed by the procedures are analyzed.

Many social network analysis measures and techniques could have been used to bring out scene facets and rearrange them around graph centers. However, to keep things concise, this paper will focus mainly on scene discovery, and only mention centrality analysis techniques very briefly.

4.2. Data collection

Finding relevant cultural data for scene research is a challenging task. Most social networking sites present some, but not all of the needed data, restricting access to it for both business and privacy reasons. For our purposes, the best available data came from "Meetup.com": an online social network that helps people organize gatherings at offline local venues to enjoy shared interests. The gatherings are called meetups, and their data points include social, topical, temporal and geographical information. Meetups are not clustered into scenes, but scenes are potentially detectable in this dataset.

Fig. 6 shows the data collection process. A scraper was implemented using Meetup.com's APIs to collect the data required to build scenes. The scraper started with a specific geographical location, and returned all meetups around that location. For each Meetup group returned, the scraper then requested a membership list and the topics that describe the group. For each member in that group, the scraper then returned their topics of interest and profile information (i.e., age, residential location), as well as the groups and meetups they belong to. The time the user joined the group, as well as the user's last activity in that group were also retrieved.
4.3. Preprocessing

Several preprocessing steps were needed before the raw data was ready for clustering and analysis:

(a) **Topic Dimensionality Reduction**: Meetup lets people propose topics in their own terms at both the group purpose and personal interest level, producing a large population of topics with many similar terms that would compromise similarity-based clustering. We reduced this dimensionality by combining topics with high syntactic similarity using text-clustering techniques.

(b) **Outlier Removal**: Outliers would negatively impact scene discovery and analysis, so it was important to purge them from the dataset and correct skewed data. We used facet filtering to detect abnormalities in the data and remove outliers.

(c) **Formatting for Visualization and Analysis**: Further refinements and transformations were needed to make the data compatible with all the tools we used in our study (e.g., Gephi).

4.4. Graph creation

As explained earlier, two methods were used to create graphs in preparation for the graph modularity partitioning step. Then the partitioning algorithm was applied in the same way to both graph types. We found that the way the graphs were created and weights assigned to their edges significantly affected the final partitioning results.

4.4.1. Method One: similarity matrix graphs

In this technique, three similarity matrices were created; one for topics based on their being liked by similar people, one for people based on their liking of similar topics, and one for location based on persons who were there.

To find the topic similarity matrix, the topic-person table was first converted into a coincidence matrix (a.k.a. adjacency matrix). Each topic was represented as a vector of users who liked it. The algorithm then correlated topic similarities using cosine similarity as shown in Eq. (1). Cosine similarity is defined as the cosine of the angle between two vectors \((x, y) \) with the value being normalized between zero and one if both \(x \) and \(y \) are positive.

\[
\text{CosSim}(x, y) = \frac{\sum x_i y_i}{\sqrt{\sum x_i^2} \sqrt{\sum y_i^2}} = \frac{x \cdot y}{\|x\| \|y\|}
\] \hspace{1cm} (1)

Cosine similarity was selected in this case for two main reasons: First, cosine similarity is proven to be powerful, yet it is the simplest inner product correlation between two vectors [60]; hence, it will give better performance results. Second, our dataset does not contain any subjective values or ratings. It consists of vectors of only zeros and ones (e.g., zero represents the absence of a person on the topic list, whereas one presents their presence). This makes a higher performance correlation measure more valuable than a shift invariant one. Furthermore, calculating the cosine correlation can be easily map-reduced/parallelized. This has major implications for the applicability of our techniques on big data sets.

Cosine similarity was calculated between each pair of topics to generate a similarity matrix. The similarity matrix was then converted into a weighted undirected graph with links between nodes (edges) considered only when the weights (similarity measures) were within the upper 97th percentile. In other words, we considered the three nearest neighbors. Fig. 7 shows an example of a similarity matrix and its corresponding graph.

The same steps were repeated to create the people and location similarity matrices. For example, in the case of the people graph, each person was represented as a vector of the topics s/he liked. The graphs generated were then exported for partitioning and clustering based on the Louvain graph modularity algorithm.
4.4.2. Method Two: the scene graph

In Method Two, instead of separately clustering people, topics, and locations, we combined them on a single graph: a scene graph. This gave it the property of being bijective. We also created it as a simple (unweighted) directed graph, with people as source nodes and either topics or locations as target nodes. So a directed edge would be created from a person node to a topic node if that person expressed an interest in it. Similarly, a directed edge would be created between a person and a location if the person was involved in an activity there or a topic situated there.

We hypothesized that the precise relationships between nodes of different facet types might preserve important information, as would the directedness. Furthermore, generating a single graph would allow us to run a multifaceted similarity analysis in a single step. However, modularity maximization partitioning uses modularity strength, which depends on the graph structure to cluster the graph into communities. Hence, all nodes in the graph would be treated as equivalent regardless of type for purposes of clustering.

Fig. 8 illustrates the scene graph of one person who likes three topics, and participates in activities related to these topics in two locations (Kitchener and Waterloo). Note that a scene graph focuses on Scene Locations rather than the personal profile location, which reflects the place of residence.

The advantage of having a scene graph is twofold: (1) It enables simple one step multi-facet clustering when combined with modularity maximization graph partitioning, (2) since scene graphs are bijective graphs, we can store more information about the relationship between scene concepts. In fact, a scene graph inherently models the core relationships of a scene (passions and places). Knowing the direction of the relationships, techniques like fan-in and fan-out analysis can be applied. This enriches knowledge discovery by providing insight about the types of clustered nodes. For example, scene graph partitioning can easily reveal who the most influential people in the scene are, where the scene is geographically centered, and what the most important topics are on a scene.

Our hypothesis was that this second approach to graph generation might produce better results than the first approach, while tremendously simplifying scene discovery. This would be extremely important for cultural scene computing, since social network data volume can explode quickly on networks with heavy user participation.

4.5. New Louvain graph partitioning techniques

This section shows how Louvain graph partitioning has been utilized and modified for scene detection.

4.5.1. Revealing community structure

The steps listed above generated graphs from “Meetup.com” data, but did not partition them into scenes. Our goal was to reveal scenes boundaries using network analysis and graph partitioning; discovering community structure and maximizing modularity by analyzing which nodes were most densely interconnected. Modularity (Q) maximization approaches partition graphs on the principle that a set of nodes are highly likely to be in the same module if they are densely interconnected as a cluster, relative to their sparser connection to other modules. Many natural networks, informal human networks, organizational networks and system networks in fact exhibit this kind of modular structure, also called community structure.
Since scenes are informal human networks, it was reasonable to hypothesize that modularity maximization would reveal the community structure of scenes.

The Louvain method is a well accepted and widely used modularity maximization approach for discovering communities in large networks. The main advantage of the Louvain method is that it is very fast (e.g., in one experiment it was able to analyze 118 million nodes in 152 minutes [15]). It also provides a generally acceptable degree of accuracy. This is extremely important for scene discovery due to the large size of social networks and that fact that data in such networks grows exponentially over time. However, what makes this approach appealing in our case is that scenes exhibit hierarchical structure; super-scenes may include several sub-scenes. This exactly matches how the Louvain method works.

4.5.2. “Reverse” Louvain

The Louvain method is an iterative algorithm with two phases. First, it searches small communities by optimizing modularity locally. This is done by assigning each node \(i \) in the network to a group (module) then calculating the gain in modularity \(\Delta Q \) of merging the node \(i \) with each of its neighbor communities \(C \), as shown in Eq. (2). Where \(\sum_{in} \) is the sum of the weights of the links inside \(C \), \(\sum_{tot} \) is the sum of the weights of the links incident to nodes in \(C \), \(k_i \) is the sum of the weights of the links incident to node \(i \), \(k_{in} \) is the sum of the weights of the links from \(i \) to nodes in \(C \), and \(m \) is the sum of the weights of all the links in the network. Based on the results, the node will be added to the module that maximizes network modularity.

\[
\Delta Q = \left[\frac{\sum_{in} + k_{in}}{2m} - \left(\frac{\sum_{tot} + k_i}{2m} \right)^2 \right] - \left[\frac{\sum_{in}}{2m} - \left(\frac{\sum_{tot}}{2m} \right)^2 - \left(\frac{k_i}{2m} \right)^2 \right]
\]

(2)

The second phase aggregates nodes within the same community to build a new network. The new network nodes are communities, which themselves are more densely interconnected than the relatively more sparse connections between nodes in the new super-community. These steps are repeated until a maximum modularity is achieved as shown in Fig. 9.

In our effort to detect scenes and sub-scenes, we exploited this hierarchy-generation feature by reversing the process. We applied the method to the whole network to discover the main scenes within it. Then we recursively applied it to each of the identified main scenes to discover sub-scenes within them.

4.5.3. Louvain on a simple directed graph

The Louvain method takes an adjacency matrix as input; hence it can be applied to undirected graphs whether or not they are weighted. In Method One, we applied the Louvain method quite conventionally to our three similarity graphs: weighted undirected graphs that grouped people, or topics, or locations into communities.

We also applied it quite unconventionally to our scene graph, which was an unweighted directed graph. We treated it as if it was an unweighted, undirected graphs for the purposes of grouping the scene graph nodes into communities, which immediately revealed scene structure. Then, we applied fan-in and fan-out analysis using directional information to identify types of nodes within the discovered scenes.

These unconventional uses of the Louvain modularity maximization algorithm generated necessary results for us, and they constitute key contributions of our research.
4.6. Scene analysis

Once the graph had been partitioned, and the boundaries of the scene were identified, depending on the type of the graph, the following techniques were applied to further reveal and analyze scene structure:

(a) **Facet Filtering**: Facet filtering [61] is a multidimensional technique that uses different data properties to organize information into groups to facilitate its exploration and navigation [62]. In our work, after our two differently produced graphs were clustered as described above, we exported them and merged them with the original dataset as new labels (facets). Each record was thus described using four additional clustering classes; namely, people clusters, topic clusters, location clusters, and scene clusters (the clusters generated through scene graph partitioning). Facet filtering could then be used to filter the records based on commonalities and mutual exclusions across the different clusters. This cluster overlapping would help find people who conducted activities in the same places around the same topics of interest. In other words, it could help identify people, topics and locations that best represented the scene core or center as shown in Fig. 10. Moreover, facet filtering could be used to evaluate the quality of clustering in both scene graph and similarity based clustering.

(b) **Fan-In Analysis**: In directed graphs, fan-in analysis is a measure of the number of links that are directed toward a node. In a scene graph, edges connect people to their topics of interest and locations. Accordingly, fan-in analysis can help identify the popularity of topics or locations within a scene. This can reveal the main topics that specify a scene, or its significant locations.

(c) **Fan-Out Analysis**: In directed graphs, fan-out analysis is a measure of the number of links that are directed out from a node. In a scene graph, fan-out analysis could help identify the most active people in a scene.

These simple techniques were essential for uncovering the main scene facets for each of the identified partitions. However, many additional network analysis techniques could be usefully applied to these graphs, generating insights that might help investors frame, find and answer questions about cultural scenes. Some of the relevant network measures are discussed in Section 7.

5. Application of the methods and experimental results

In this section, a case study will be used to illustrate how the graph construction and scene identification approach can be applied on a given dataset.

5.1. Case study description

As explained earlier, the dataset used in this study was crawled from Meetup.com using the process explained in Section 4.2. The data was collected and reconciled based on shared keys between the different datasets. In total, information about 150 groups were collected. The collected groups were all located within 25 miles of Waterloo, Ontario, and distributed between 14 urban communities. Out of those 150 groups, 132 groups were open, 1 was closed and 7 had only recently been approved. Out of the 132 open groups, only 123 groups were publicly accessible. 813 topics within 28 categories were used to describe these groups with, an average of six topics per group. The total number of members including duplicates was 13,735 users; since a user can be a member of several groups.

In addition to the main dataset, a subset of the crawled data was created for validation. This subset was studied thoroughly to make it serviceable as a ground truth for qualitative evaluation of the clustering. Table 1 summarizes the parameters of the two datasets. Table 2 shows example of the crawled data.
5.2. Data preprocessing and refinement

Several decisions had to be made to prepare the data for analysis. First, groups and users who made their data private were filtered out. Then, topical dimensionality was reduced. After that, members with unusually many topics of interest were removed. Finally, data inconsistencies and special characters were treated.

Data preprocessing and refinement was conducted using Open Refine (previously known as Google Refine). Open Refine is an open source tool for refining messy data, cleaning it up, and transforming it from one format into another [63]. It facilitates facet analysis and provides a set of clustering techniques out of the box. It also allows users to review clustering results before reflecting them back into the original dataset as shown in Fig. 11.

Two clustering techniques were chosen based on their performance in finding phonetically and syntactically similar topics. The first was a key collision technique based on the Metaphone3 phonetic algorithm [64]. The second was based on a variation of the k nearest-neighbor algorithm that uses Levenshtein distance [65] to measure the similarity/difference between topics (i.e., strings). Combining both clustering techniques reduced the number of topics by an average of 11.5%.

Fig. 11 shows the manual part of the process, in which users are given the choice to accept or reject merging the suggested similar raws under the same cluster. For example, based on Metaphone3, the algorithm suggests that both the topics “Entrepreneur” and “Entrepreneurship” should be clustered under the same topic “Entrepreneur”. By accepting this suggestion, 441 raws will be merged with 310 raws to have a bigger cluster of 751 raws.

After applying facet filtering to the dataset, it became apparent that a few members have very large numbers of topics of interest (i.e., over 100 topics). A decision was made to exclude those members by removing the top 3% of members with highest topic counts. We surmised that these members did not have focal interests, but were rather Meetup trackers. Their presence in the dataset would have been deleterious to the clustering algorithms. Finally, all trailing spaces, inconsistencies, symbols, and special characters were removed or replaced (e.g., replacing & with AND) in order to avoid errors while transforming data from one format into another throughout our multi-step procedures.

5.3. Scene discovery results

After data refinement, the dataset was transformed into the four types of graphs our methods produce (people, topic, location, and scene graphs) based on the two techniques described in Section 4.4. The graphs were then exported to the Gephi visualization and analysis platform. Gephi is an open-source interactive visualization and exploration platform for networks, complex systems, dynamic and hierarchical graphs. It provides powerful tools that implement several statistical analysis, filtering and visualization algorithms that can be applied directly to graphs [59].

Fig. 12 shows a sample of a people similarity matrix and its corresponding people graph. Each node in the graph represents a person; an edge between two people indicates a similarity between them, while the edge weight (thickness) corresponds
<table>
<thead>
<tr>
<th>Member Id</th>
<th>Topics ID</th>
<th>Topics name</th>
<th>Member city</th>
<th>Member groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>12209746</td>
<td>1044</td>
<td>Event_Planning</td>
<td>Waterloo</td>
<td>Webdesigners/developers</td>
</tr>
<tr>
<td>4417</td>
<td>Consciousness</td>
<td>Holistic Health</td>
<td>Waterloo</td>
<td>Consciousness</td>
</tr>
<tr>
<td>15478</td>
<td>Holistic Health</td>
<td>Holistic Health</td>
<td>Internet_AND_Technology</td>
<td>34</td>
</tr>
<tr>
<td>15018</td>
<td>Music</td>
<td>Meditation</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>1322</td>
<td>Meditation</td>
<td>Meditation</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>1322</td>
<td>Meditation</td>
<td>Meditation</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>1444</td>
<td>Event_Planning</td>
<td>Event_Planning</td>
<td>Web_Design</td>
<td>Web_Design</td>
</tr>
<tr>
<td>11</td>
<td>Games</td>
<td>Games</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>12209746</td>
<td>1044</td>
<td>Event_Planning</td>
<td>Waterloo</td>
<td>Webdesigners/developers</td>
</tr>
<tr>
<td>4417</td>
<td>Consciousness</td>
<td>Holistic Health</td>
<td>Waterloo</td>
<td>Consciousness</td>
</tr>
<tr>
<td>15478</td>
<td>Holistic Health</td>
<td>Holistic Health</td>
<td>Internet_AND_Technology</td>
<td>34</td>
</tr>
<tr>
<td>15018</td>
<td>Music</td>
<td>Meditation</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>1322</td>
<td>Meditation</td>
<td>Meditation</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>1322</td>
<td>Meditation</td>
<td>Meditation</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>1444</td>
<td>Event_Planning</td>
<td>Event_Planning</td>
<td>Web_Design</td>
<td>Web_Design</td>
</tr>
<tr>
<td>11</td>
<td>Games</td>
<td>Games</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>12209746</td>
<td>1044</td>
<td>Event_Planning</td>
<td>Waterloo</td>
<td>Webdesigners/developers</td>
</tr>
<tr>
<td>4417</td>
<td>Consciousness</td>
<td>Holistic Health</td>
<td>Waterloo</td>
<td>Consciousness</td>
</tr>
<tr>
<td>15478</td>
<td>Holistic Health</td>
<td>Holistic Health</td>
<td>Internet_AND_Technology</td>
<td>34</td>
</tr>
<tr>
<td>15018</td>
<td>Music</td>
<td>Meditation</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>1322</td>
<td>Meditation</td>
<td>Meditation</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>1322</td>
<td>Meditation</td>
<td>Meditation</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>1444</td>
<td>Event_Planning</td>
<td>Event_Planning</td>
<td>Web_Design</td>
<td>Web_Design</td>
</tr>
<tr>
<td>11</td>
<td>Games</td>
<td>Games</td>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 12. People similarity matrix and its corresponding people graph.

Fig. 13. Topics graph after applying Louvain’s modularity.

to the strength of the relationship. Location and topic graphs are similar to the people graph; they consist of one type of nodes with weights on the edges. The Louvain algorithm was applied to all of the graphs that were based on similarity matrices (i.e., people, topics, locations). The result of clustering was exported and reconciled with each record in the dataset for evaluation.

Fig. 13 shows an example where modularity partitioning was applied to a topic graph using dataset 2 and the people similarity analysis. As shown in the figure, topic graphs express high modularity (i.e., $Q = 0.713$). Seven communities were identified; and within each community the topics were ranked using the degree of connectivity as a metric to show the importance and centrality of the topics. For example, in Fig. 13, it is clear that the Drum Circle was a centralized topic within the main community in dataset 2.

Now, given the fact that this dataset was built using two groups; one of them is the Organic Groove Community Drummers, which was mainly a drumming circle meetup. It is apparent that the topic graphs can be effectively be used to discover communities in cultural web data. However, our goal was to discover scenes, not topical communities. The goal was to cluster people, location and topics all together. In order to create scenes, the results of clustering topics, locations, and people had to be merged. This was done by overlapping the partitioning results using facet filtering. More about this will follow in the evaluation section.

We proceeded as described earlier with applying the Louvain algorithm, unconventionally, to the scene graphs (directed unweighted graphs with different node types) we generated from the dataset. Fig. 14a shows an example of applying the Louvain algorithm on the scene graph generated from dataset 1. 1070 communities were identified. The maximum modularity was ($Q = 0.469$) which can be considered adequate. Out of the 1070 communities identified, 14 communities represent 90% of the whole dataset. This is because in large social networks, modularity optimization often fails to detect clusters smaller than some scale [66]. For this reason, we applied modularity optimization in iterations. However, the preliminary results of this clustering strategy were already appealing. For example, when emphasizing fan-in analysis (by using it as a
Fig. 14. Scene detection and analysis process.
Table 3
A sample of records after reconciliation.

<table>
<thead>
<tr>
<th>Member ID</th>
<th>Topic name</th>
<th>People clustering topics similarity</th>
<th>Topics clustering people similarity</th>
<th>Scene graph topics</th>
<th>Scene graph people</th>
</tr>
</thead>
<tbody>
<tr>
<td>12209746</td>
<td>Event_Planning</td>
<td>P4</td>
<td>T2</td>
<td>SG5</td>
<td>SG5</td>
</tr>
<tr>
<td>12209746</td>
<td>Spirituality</td>
<td>P4</td>
<td>T2</td>
<td>SG5</td>
<td>SG5</td>
</tr>
<tr>
<td>12209746</td>
<td>Consciuosness</td>
<td>P4</td>
<td>T2</td>
<td>SG5</td>
<td>SG5</td>
</tr>
<tr>
<td>12209746</td>
<td>Holistic_Health</td>
<td>P4</td>
<td>T2</td>
<td>SG5</td>
<td>SG2</td>
</tr>
<tr>
<td>12209746</td>
<td>Music</td>
<td>P4</td>
<td>T2</td>
<td>SG5</td>
<td>SG5</td>
</tr>
<tr>
<td>5230546</td>
<td>Italian_Language</td>
<td>P5</td>
<td>T3</td>
<td>SG6</td>
<td>SG6</td>
</tr>
<tr>
<td>5230546</td>
<td>French_Language</td>
<td>P5</td>
<td>T3</td>
<td>SG6</td>
<td>SG6</td>
</tr>
<tr>
<td>5230546</td>
<td>Hiking</td>
<td>P5</td>
<td>T2</td>
<td>SG5</td>
<td>SG2</td>
</tr>
<tr>
<td>5230546</td>
<td>Walking</td>
<td>P5</td>
<td>T2</td>
<td>SG6</td>
<td>SG6</td>
</tr>
<tr>
<td>5230546</td>
<td>Spanish_Language</td>
<td>P5</td>
<td>T3</td>
<td>SG6</td>
<td>SG6</td>
</tr>
<tr>
<td>5230546</td>
<td>Dining_Out</td>
<td>P5</td>
<td>T4</td>
<td>SG6</td>
<td>SG1</td>
</tr>
<tr>
<td>5230546</td>
<td>Childfree</td>
<td>P5</td>
<td>T3</td>
<td>SG6</td>
<td>SG6</td>
</tr>
<tr>
<td>5230546</td>
<td>Alternative_Health</td>
<td>P5</td>
<td>T2</td>
<td>SG6</td>
<td>SG5</td>
</tr>
<tr>
<td>5230546</td>
<td>Meditation</td>
<td>P5</td>
<td>T2</td>
<td>SG6</td>
<td>SG5</td>
</tr>
<tr>
<td>5230546</td>
<td>Outdoor_Recreation</td>
<td>P5</td>
<td>T2</td>
<td>SG6</td>
<td>SG2</td>
</tr>
</tbody>
</table>

ranking factor to enlarge the node and label size), the main topics and topic groups (e.g., 34 which refers to the technology topic group) in each scene became visible. (Waterloo Region is known to be a center for the technology scene in Ontario.) This was obvious in the result, which showed technology as the topic category with highest fan-in. The results of clustering via this method were also exported and reconciled with the records in the dataset for further analysis and evaluation.

At this juncture, it is important to highlight the concrete advantages of applying the Louvain algorithm in multiple iterations to discover sub-scenes. For example in Fig. 14b, the graph in Fig. 14a was filtered to show only the technology scene. The Louvain algorithm was then applied to the technology scene alone, which partitioned it into 9 technological communities with maximum modularity of ($Q = 0.456$). Fig. 14c shows the relationships between the generated communities. In this figure, the bigger is the community, the bigger the size of the node. Fig. 14d focuses on communities 3, 4, and 9, which refer to mobile development, technology start-ups and web development, respectively. Note that all these figures present fan-in analyses, revealing the topical dimension of the scene. Nevertheless, these scenes also include people and location nodes as shown in Fig. 14e. In which, we zoomed in to show the labels of the different nodes that may not be apparent due to its low ranking based on fan-in analysis. On the other hand Fig. 14f shows the soft clustering characteristic in scene graphs. "Entrepreneurship" lies between the technology start-up scene and the business networking scene. Soft clustering is one of the main characteristics of scene graphs that facilitate discovering new scenes.

6. Evaluating the scene discovery results

It is challenging to evaluate the results of scene discovery efforts without any ground truth data. Evaluating clustering approaches is known to be difficult if no ground truth data is available. In fact, this is considered an open research problem. This section presents the techniques we used to evaluate our scene clustering results.

After graph partitioning, each node belonged to one cluster. For example, as shown in Table 3, the person with member ID (12209746) belonged to cluster SG5 when the partitioning was done using the scene graph method. The same person belonged to partition T2 in when we used people graph partitioning, and P2 after topic graph partitioning.

The nodes with their corresponding partitions were then reconciled with the original records information (each record in the dataset was matched with its corresponding partition). As illustrated in Fig. 15, one record could be distributed across different partitions depending on whether the reconciliation was done based on the topic, location, or member ID. Table 3 shows a sample of records after reconciliation. The evaluation case considered only topics and people; since the location in the dataset was the same for all the scenes (i.e., Kitchener/Waterloo).

The outcome of the scene discovery methods were evaluated based on three evaluation criteria; namely, (1) scene relevancy (i.e., precision, recall, F1-score) and community size (2) Jaccard similarity, and (3) modularity. The following subsections explains them in more detail.

6.1. Scene relevance and community size

The ability to discover and retrieve relevant scenes depends on the quality of scene partitioning, which was evaluated based on calculating the scene topics (i) precision, (ii) recall, (iii) F1-score. In addition, we assessed (iv) the number of people within the scene (cluster size). The evaluation relied on two hypotheses:

(a) **Hypothesis 1**: When a scene discovery approach is applied to a dataset that consists of well-defined cultural groups (e.g., Meetup groups), then the minimum number of scenes should be at least equal the number of groups, with each scene centralized around the topics that describe each group.
Table 4
Clustering results after applying the different graph partitioning to the “Organic Groove Community Drummers” dataset.

<table>
<thead>
<tr>
<th>Similarity analysis graphs</th>
<th>Scene graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of topic clusters after applying partitioning</td>
<td>6</td>
</tr>
<tr>
<td>No. of people clusters after applying partitioning</td>
<td>6</td>
</tr>
<tr>
<td>Total No. of clusters</td>
<td>12</td>
</tr>
<tr>
<td>Total No. of topics in the graph</td>
<td>225</td>
</tr>
<tr>
<td>Total No. of people in the graph</td>
<td>32</td>
</tr>
<tr>
<td>Total No. of sample records (sum of all fan-ins)</td>
<td>475 records</td>
</tr>
<tr>
<td>Largest topics cluster</td>
<td>274 records (47 topic & 30 ppl)</td>
</tr>
<tr>
<td>Largest people cluster</td>
<td>99 records (49 topic & 6 ppl)</td>
</tr>
<tr>
<td>Inner join of topics & people (topics ∩ people)</td>
<td>81 records (33 topic & 6 ppl)</td>
</tr>
</tbody>
</table>

(b) Hypothesis 2: A scene discovery approach that provides higher precision, recall and a larger cluster size is better.

Precision and recall are calculated with respect to scene topics, while cluster size is based on the number of people within the scene.

Cluster size is important for Sceneverse because a new digital service aimed at enhancing scenes needs to successfully engage the more peripheral participants in any scene. Core/central participants are already well informed of scene events and opportunities through word of mouth, cultural news media, existing online social media and the like. To add value within the existing cultural media landscape, Sceneverse needs to detect marginal participants and increase the frequency of their participation in scene activities. That increased participation will funnel more support towards the efforts of scene activity organizers at the scene’s core.

To find the overlap between topics and people clusters, and to analyze the results; facet analysis was performed using the different clustering results on the reconciled dataset. The dataset used in the evaluation process is a subset of dataset 2. It was generated around the “Organic Groove Community Drummers” group. Accordingly, and based on Hypothesis 1, the topics that describe that group will definitely represent at least one of the scenes within that group. Most of the time, it will be the largest scene within that group.

Table 4 shows the clustering results after (1) converting the dataset into a topic graph, a people graph and a scene graph, and (2) partitioning the graphs using the Louvain algorithm. The first column shows the similarity analysis results for the overlap of the topic and people graphs (method one), while the second column shows the results derived from the scene graph (method two).

To calculate precision, the topics (TP) with the highest fan-in within the inner join of the largest topic (T) and people (P) clusters were compared to the original group topics (TP_original) (i.e., the Organic Groove Community Drummers). Eq. (3) shows how scene precision has been calculated using Similarity Analysis (SA). Similarly, the scene graph topics (ΠTP(SG)) of the largest scene detected were compared with the original group topics. Eq. (4) shows how scene precision has been calculated for the Scene Graph (SG) results. In the equations, the Π symbol represents the topic projection, while ⊖ represents the join of the topic and people graphs, i.e., the scene graph as derived by this method.

\[
\text{Precision}_{SA} = \frac{\mid \Pi_{TP(TC \sqcap P_C)} \cap \{TP_{Original}\} \mid}{\mid \{TP_{Original}\} \mid}
\]

Please cite this article in press as: M. Hamdaqa et al., Cultural scene detection using reverse Louvain optimization, Science of Computer Programming (2014), http://dx.doi.org/10.1016/j.scico.2014.01.006
Input: Dataset
Output: Scene-Relevant
forall the Records $r \in$ Dataset do
 if RecordTopic $rtp \in$ SceneTopic then
 Scene-Relevant++;
 end
end

Algorithm 1: Finding relevant scenes.

Table 5
Topics of the Organic Groove Community Drummers.

<table>
<thead>
<tr>
<th>Original</th>
<th>Similarity analysis graphs</th>
<th>Scene graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative health</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Meditation</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Drum circle</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>Consciousness</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Live music</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Social</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Music</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Hand drumming</td>
<td>5</td>
<td>a</td>
</tr>
<tr>
<td>Drumming</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Meeting new people</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>African drumming</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Recreational drumming</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>West African drumming</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Healing rhythms drum circle</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Social</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total number of records with exact topics</td>
<td>60</td>
<td>89</td>
</tr>
</tbody>
</table>

$$\text{Precision}_{SG} = \frac{|TP_{\{\text{SG}\}} \cap \{TP_{\text{Original}}\}|}{|TP_{\text{Original}}|}$$ \hspace{1cm} (4)

Eq. (5) shows the formalism for assessing scene recall. Scene recall was calculated by comparing the number of records in the scene ($R_{\text{Scene-Retrieved}}$), where a user indicated interest in any topics used to describe the ground truth scene, to the number of records in the dataset that refer to the same topics ($R_{\text{Scene-Relevant}}$).

$$\text{Recall} = \frac{R_{\text{Scene-Retrieved}}}{R_{\text{Scene-Relevant}}}$$ \hspace{1cm} (5)

$R_{\text{Scene-Retrieved}}$ can be calculated by summing all the fan-in values for all topics that constitute the scene, as shown in Eq. (6).

$$R_{\text{Scene-Retrieved}} = \sum_{i=1}^{n} \text{TP}_i(\text{FanIn})$$ \hspace{1cm} (6)

On the other hand, $R_{\text{Scene-Relevant}}$ can be found by searching the records for scene-specific topics as shown in the pseudocode in Algorithm 1.

Table 5 shows the main topics that described the “Organic Groove Community Drummers”. The table also shows the fan-in analysis of these topics in both the scene graph, as well as the inner join of both topic and people similarity graphs.

As shown in Table 6, both techniques provide 100% precision with respect to the topics that describe the “Organic Groove Community Drummers” group. However, the scene graph technique provides higher recall with respect to the total number of records returned in which a user indicated an interest in any of the topics used to describe the “Organic Groove Community Drummers” group. However, the scene graph technique recalled more of the total number of records where users indicated interest in topics describing the Organic Groove Community Drummers group. Moreover, the size of the scene community in terms of participants identified is much higher using the scene graph technique; almost 92% higher.

Finally, to show the accuracy of the scene graph approach over the similarity analysis graph approach, the harmonic mean of precision and recall, or F1 score, has been calculated. The F1 score takes values between zero and one; the closer the value to 1 the higher the accuracy of the information retrieval approach. Eq. (7) shows how the F1 score is calculated. The results are shown in Table 6, where the F1 score confirms higher accuracy for the scene graph over the similarity analysis graph technique.

$$F1 = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$ \hspace{1cm} (7)
Table 6
Precision, recall and scene size results.

<table>
<thead>
<tr>
<th>Similarity analysis graphs</th>
<th>Scene graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of records with exact</td>
<td>60</td>
</tr>
<tr>
<td>Topics returned total number of records with exact</td>
<td>122</td>
</tr>
<tr>
<td>Topics in the dataset precision (with respect to the original group topics list)</td>
<td>100%</td>
</tr>
<tr>
<td>Recall</td>
<td>49%</td>
</tr>
<tr>
<td>F1 measure</td>
<td>65.77%</td>
</tr>
<tr>
<td>Number of people in the scene</td>
<td>6 ppl</td>
</tr>
</tbody>
</table>

Table 7
Evaluation results using Jaccard and theme similarity.

<table>
<thead>
<tr>
<th>Scene</th>
<th>Equivalent graphs partition</th>
<th>Jaccard similarity index</th>
<th>Theme similarity index</th>
<th>Total No. of topics</th>
<th>Total No. of topics (T ∩ P)</th>
<th>Total No. of people</th>
<th>Total No. of people (T ∩ P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG1</td>
<td>T4 ∩ P2</td>
<td>0.547</td>
<td>1.0</td>
<td>40</td>
<td>26</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>SG2</td>
<td>T2 ∩ P5</td>
<td>0.271</td>
<td>0.6</td>
<td>52</td>
<td>37</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>SG3</td>
<td>T2 ∩ P1</td>
<td>0.442</td>
<td>0.2</td>
<td>22</td>
<td>40</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>SG4</td>
<td>T1 ∩ T3</td>
<td>1.0</td>
<td>1.0</td>
<td>26</td>
<td>26</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>SG5</td>
<td>T2 ∩ P4</td>
<td>0.605</td>
<td>1.0</td>
<td>36</td>
<td>33</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>SG6</td>
<td>T5 ∩ P1</td>
<td>0.308</td>
<td>0.2</td>
<td>31</td>
<td>32</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

6.2. Jaccard similarity for scenes with no ground truth

A similar process that does not require ground truth data was applied to all other clusters (other than the main one which was used in the previous analysis). The process began by finding all the inner joins of the different combinations of people and topics graphs partitions. Then, for each partition in the scene graph, similarity was calculated to find the distance between each of the inner join sets and the partition. As shown in Eq. (3), the Jaccard Similarity Index was calculated by finding the size of the intersection between the scene topics (A) and each of the inner join combinations (B) divided by the size of the union of the two sets. After calculating the Jaccard Similarity Index, it was apparent that more information was needed in order to reason scientifically about the results. For this reason, another similarity metric that also uses Jaccard Similarity was used to refine and confirm the results of the first metric.

\[
J(A, B) = \frac{|A ∩ B|}{|A ∪ B|}
\]

(8)

We call this metric scene theme similarity. As indicated by the name, this metric focused on the main scene topics; those shared by many Scene People. Scene theme similarity was calculated by creating a list that consisted of the top five topics (highest in fan-in) for each scene and topic people inner join cluster. Then, the themes were compared using Jaccard Similarity.

As shown in Table 7, by combining both Jaccard and theme similarity, better insight into clustering results was attained. For example, if both Jaccard similarity and theme similarity were high (i.e., above 0.5), this was a good indication that the scene discovered had a well-defined boundary. Examples of such scenes were SG1, SG5 and SG4. In this case, the larger the size of the scene, the better the scene. For example, even though both similarity indices of SG4 were high; it was considered to be a weak scene, because it was so small (2 people).

On the other hand, when Jaccard and theme similarity were both low, or in cases when theme similarity was higher than Jaccard similarity, manual data inspection was performed. We adjudged that scene graph partitioning provided more rational results. In the case where theme similarity was higher than Jaccard, the scenes discovered using the inner join method were composite mixed scenes (i.e., contained more than one scene). On the other hand, when both Jaccard and theme similarity were low, the scene was not clearly identified in the case of the inner join.

For instance, the SG6 theme contained the following topics: Walking, Camping and Kayaking, Backpacking, and Board Games. The (T5 ∩ P1) theme contained: Board Games, Executive and Business Coaching, Psychology, Yoga, Atheists. Clearly the topical theme of SG6 is more coherent and makes more sense for clustering as a scene than the one generated using the inner join method (T5 ∩ P1).

It is worth mentioning that the results obtained using these metrics is aligned with the results obtained when ground truth data were available. Both results favor scene graph over the people-topic inner join for scene discovery. Moreover, using either quantitative or qualitative analysis, a good scene still evinced the same properties; a cohesive community, strong central topics and significant numbers of people participating.
6.3. Modularity metric Q

Modularity is a widely used metric to show how well a network is partitioned. Consequently, modularity was calculated for the three graphs generated here. The results of applying the Louvain method to the people, topic, and scene graphs are 0.647, 0.713, and 0.469 respectively. Overall modularity was adequate, indicating cohesive communities. The modularity of both people and topic graphs separately was higher than that for the scene graph. This result is expected since the more dimensions you add to the graph the less modularity you have. However, it is this characteristic that gives the scene graph its special property as a graph uniquely able to reveal the cultural contours of the scene.

7. Discussions on obtained results

Graphs with a single node type that are created using similarity analysis play important roles in recommendation systems. Such graphs can achieve high modularity when applying graph partitioning, and hence they delineate coherent partitions or communities. Unfortunately, communities identified in these graphs fail at representing cultural scenes. This is because a scene is a multidimensional concept, in which time, location, topics and people all contribute to define the scene boundary. A workaround can be devised by first creating a graph for each of the dimensions, then partitioning (clustering) these graphs, and finally finding the inner join of the different partitions. Unsurprisingly, the results of this workaround are disappointing because of the size of the communities generated. Overlapping the communities is a type of hard clustering. It assists in identifying the scene center, but fails to capture the whole scene. In order to be able to identify the boundaries of the scene efficiently, there is a need for either (1) efficient techniques that can combine different similarity measures, or (2) similarity measures that work the same way with different types of objects.

The scene graph approach was created to address this particular problem. It creates a graph that combines different types of nodes. Then, it uses graph modularity to partition the graph. From the graph partitioning algorithm perspective, all nodes are the same, despite their scene-dimension type. In order to preserve as much information about the node types in the graph as possible, the scene graph was constructed as a directed graph. Moreover, a record reconciliation process, followed by facet filtering, was used to merge the partitioning results with the original records in order to further analyze the clustering results.

7.1. The main findings

Scene graph partitioning is a soft clustering technique. That is designed specifically to discover scenes in cultural data. It is easier faster and more suitable for discovering cultural scenes than single facet graphs and their overlaps. This is shown in the evaluation experiment on the small Meetup dataset, in which the scene graph method outperformed the method based on graph similarity and overlap by almost 53% in terms of execution time. The 53% has been obtained by comparing the time needed for scene detection using the scene graph, and the sum of the time needed to partition and overlap the people, location, and topics graph. Moreover, the quality of the scenes generated using the scene graph method demonstrated much more complete and representative scene communities, with almost a 92% larger community size and 18.62% higher accuracy, based on the F1 measure.

7.2. Dependency on Louvain graph partitioning

Both methods proposed in this paper depend on Louvain graph partitioning. In fact, the performance bottleneck for the scene graph approach stems from its dependency on Louvain graph partitioning for community detection. The scene graph calls the partitioning algorithm recursively; and this has obvious implications for the efficiency and scalability of the partitioning algorithm in large datasets. In a recent study, Papadopoulos et al. [26] have compared the performance of existing community detection techniques, and they favored the Louvain method over other methods for large scale graphs such as social networks. This study supports Papadopoulos findings. We compared six different community detection techniques (i.e., Louvain [15], Fast Greedy [67], Leading Eigen Vector [68], Walktrap [69], Label Propagation [70], and Infomap [71]) in terms of complexity, performance, modularity and the number, the size and structure of the generated communities. We applied the different techniques on the first Meetup dataset used for scene detection (i.e., 10,781 vertices and 61,151 edges).

Table 8 compares the complexity of each of the aforementioned methods. The first column in the table represents the complexity obtained without any assumptions about the underlying graph, while the second assumes a sparse graph, in which the number of vertices is approximately equal the number of edges. The complexity of community detection algorithms is usually expressed in terms of the number of vertices (n), number of edges (m), as well as the depth of the tree (d) when hierarchical methods are used. Complexity gives a good indication of how well the algorithms will perform as the dataset size reaches infinity. The results of comparing complexity shows us that the Louvain method is one of the best candidates in terms of complexity. Other possible candidates include Label Propagation and Infomaps.

Complexity analysis helps us understand the scalability of the algorithm. However, the experimental results better illuminate the performance of the algorithm with respect to the different dataset types, sizes, and other factors that can impact the algorithm performance (e.g., memory consumption).
Table 8
Comparison of community detection algorithms in terms of complexity.

<table>
<thead>
<tr>
<th>Method</th>
<th>Actual complexity</th>
<th>Sparse graphs complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Louvain [15]</td>
<td>$O(n^2)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Fast Greedy [67]</td>
<td>$O(n^2d \log n)$</td>
<td>$O(n \log^2 n)$</td>
</tr>
<tr>
<td>Leading Eigen Vector [68]</td>
<td>$O(n^2d)$</td>
<td>$O(n^2 \log n)$</td>
</tr>
<tr>
<td>Walktrap</td>
<td>$O(n^2)$</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>Label Propagation [70]</td>
<td>$O(n^2 \log n)$</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>Infomap [71]</td>
<td>$O(n^2 \log n)$</td>
<td>$O(n \log n)$</td>
</tr>
</tbody>
</table>

Fig. 16. A radar chart displaying a comparison between six different community detection algorithms in terms of modularity and execution time.

The radar chart in Fig. 16 shows a multivariate comparison between the aforementioned community detection algorithms, in terms of modularity and execution time. Fig. 16 shows the results of applying the different algorithms on the Meetup dataset. The results show that the Louvain method has the highest modularity and the lowest execution time over all other techniques for this specific data-set. The Label Propagation method, which shares the same complexity metrics as the Louvain method, performs more poorly by comparison, and hence it has been eliminated.

The suitability of the Louvain method for this task has been further confirmed by comparing the methods in terms of communities size and structure as shown in Fig. 17.

The figure shows the number of communities detected by each method with respect to the size of the community. It is clear from the figure that the Louvain method tends to generate more structured communities of significant size. Conversely, Infomap generates large number of very small communities. These Infomap-derived communities are not very representative of scenes, as explained in the evaluation section.

By applying the Louvain method recursively on the detected communities, more sub-communities can be revealed in a meaningful hierarchical structure. For example, when applying the Louvain method in two steps on the Meetup dataset, 128 sub-communities were detected. The whole process took around 1.78 seconds an average modularity of 0.62. This result is
Scene discovery depends on the ability to cluster similar people, who have similar interests, expressed around similar events and venues, in certain locations, within a general span of time. This is challenging, since most clustering techniques work on single facet, and the scene is a multifaceted concept. To deal with this challenge, two techniques were examined. In the first technique, social and cultural data were first converted into three types of single faceted socio-cultural graphs; one for people, one for topics and one for locations. Each of these graphs were then partitioned into groups based on Louvain modularity optimization, and the resultant communities were overlapped to create scenes. In the second technique, a scene graph, which is a multifaceted directed graph, was created. Then it was partitioned directly into scenes using Louvain modularity optimization.

The two proposed methods were empirically evaluated using data crawled from the cultural and social network Meetup.com. Preliminary results demonstrate the superiority of the scene graph technique over the overlapping of single-faceted graphs in identifying the scene boundaries. While both techniques were able to detect the scene center in terms of the key people, main topics and central locations for a scene, the size of the community in terms of number of people identified was larger with scene graph partitioning. This is because a scene graph partitioning is a softer clustering technique than community overlapping.

The scene graph technique proposed in this paper overcomes two of the main drawbacks associated with graph partitioning. The first drawback is the information lost when converting a multifaceted dataset into graphs. We overcame this
problem by preserving relational information in directed graphs, then using fan-in and fan-out analysis to highlight the different nodes in each partition. The second drawback is specifically related to modularity optimization techniques, in which modularity at a large scale fails to reveal small communities. This problem has been addressed by applying the Louvain algorithms in iterations. In fact, taking this approach proved ideal for scene discovery, since it organizes scenes in hierarchical order (scene, sub-scene), which fits the natural social topology of scene. Scene graphs are designed specifically to discover scenes in cultural data. Scene graph analysis using reverse Louvain optimization is easier, faster and more suitable for discovering cultural scenes than overlapping single facet graphs.

In addition to our scene discovery procedure, this article also briefly discussed scene analysis techniques. We used fan-in, fan-out and facet filtering to discover important scene graph nodes. Future efforts will focus on investigating other analysis techniques to rank people, topics and locations within each scene (e.g., based on centrality or other social network analysis measures). The results will be used in prototypes of the Sceneverse platform to enhance scene experience and to provide scene participants with better choices. Moreover, the scene discovery approach proposed in this paper is potentially generalizable to other domains. Hence, we are planning to apply this technique to other domains where multifaceted recommenders are needed.

Appendix A. OWL scene ontology graph

Appendix B. Scene ontology triples

<table>
<thead>
<tr>
<th>Subject</th>
<th>Predicate</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://www.sceneverse.com/CW/scene/</td>
<td>http://www.w3.org/2000/01/rdf-schema#comment</td>
<td>"This ontology describes the cultural scene based on Sceneverse Inc. definition"</td>
</tr>
</tbody>
</table>

(continued on next page)